Vega 2 visits Venus

Vega 1The landing module of the Vega 2 unmanned space probe successfully lands on Venus, gathering and analyzing soil samples and transmitting its findings back to Earth before the heat and atmospheric pressure destroy it within an hour. The terrain it lands on is found to be composed of rock resembling the surface of Earth’s moon. The Vega 2 “mothership” continues past Venus, en route to a rendezvous with Halley’s Comet.

Galileo at Venus

VenusNASA/JPL’s Galileo space probe – eventually bound for Jupiter – reaches the first destination on its looping “VEEGA” (Venus/Earth/Earth Gravity Assist) trajectory, the planet Venus. This flyby of Venus allows for testing of Galileo’s cameras and other science instruments, offering the first near-infrared views of the planet’s dense clouds, and the discovery that there is almost no water vapor in Venus’ thick carbon-dioxide atmosphere. The next “stop” for Galileo is Earth, mere months later.

Magellan arrives at Venus

MagellanLaunched via space shuttle in May 1989, the long-delayed Magellan space probe reaches the planet Venus after an unusually long voyage (15 months) and begins an orbital insertion maneuver. Where most missions to Venus have reached the planet in only a few months, Magellan has had to make do without the more powerful Centaur liquid-fueled booster stage, resulting in a journey of a year and three months. (The Centaur upper stage had been cancelled after the Challenger disaster because it was felt that carrying an additional liquid-fueled rocket in a shuttle cargo bay was too risky.) Magellan is placed into an elliptical orbit, completely circling Venus every three hours, where it will conduct high-resolution radar mapping of the surface at the closest point in its orbit, and transmitting the resulting data to Earth while furthest from Venus. The first phase of the mapping mission will last through 1991.

Magellan the mapmaker

VenusNASA’s Magellan space probe, orbiting the planet Venus, has completed a checkout phase and begins its primary mapping mission, intended to gather data of the Venusian surface as high resolution as one kilometer per pixel. Rather than using visible light – which would yield only images of Venus’ dense clouds – Magellan uses radar to map the planet’s blistering hot surface. Launched in May 1989 via space shuttle, Magellan will continue mapping the surface of Venus through May 1991.

More from Magellan the mapmaker

VenusNASA’s Magellan space probe, which has been mapping the planet Venus from orbit since September 1990, completes the first phase of its map-making mission, completing radar imaging of more than 80% of the planet’s surface. NASA authorizes an extended mission, lasting into 1992, which will yield a more complete map of the Venusian surface, including its polar regions.

Magellan: mapping Venus in stereo

VenusThe third phase of data gathering begins for NASA’s Magellan unmanned space probe, launched via space shuttle in 1989 and currently orbiting the heavily-clouded planet Venus. Using radar to peer through the planet’s dense clouds, Magellan has now mapped 96% of the planet’s surface, and will now spend much of the remainder of 1992 filling in details in regions it has missed, as well as re-scanning some regions of Venus stereoscopically, allowing for three-dimensional terrain reconstruction.

Magellan goes fourth at Venus

VenusNASA’s unmanned Magellan space probe, having completed three extensive campaigns of mapping the surface of Venus from orbit with cloud-penetrating radar, begins a fourth mission phase, this time sending constant engineering telemetry to Earth, where measurements of Doppler shift in the signal received allows Earthbound scientists to map the gravitational field of Venus. Magellan’s map-making days are over, having achieved a 98% complete map of the cloud-shrouded planet that it has been orbiting since 1990.

Farewell to Pioneer Venus

VenusThe Pioneer Venus Orbiter, launched into orbit around Venus in 1978 and now the only surviving component of the Pioneer Venus mission, enters the cloudy planet’s dense, toxic atmosphere and disintegrates, its fuel supply too exhausted to keep it in orbit any longer. Originally intended to orbit Venus for only a year, Pioneer Venus has survived, fully functional, for nearly 14 years in Venusian orbit, continuing to study the planet and taking readings not only Venus but such objects as Halley’s Comet.

Magellan tests aerobraking at Venus

MagellanTo increase the accuracy of its gravity map of the planet Venus, NASA’s unmanned space probe Magellan conducts the first experimental aerobraking maneuvers to alter the shape its orbit to a near-circular shape. By dipping Magellan into the upper layers of the Venusian atmosphere, the spacecraft is slowed and its orbit is changed, but it is kept far enough from the denser lower layers of the atmosphere to avoid re-entry. Aerobraking will become more commonly used by future space probes at the planet Mars.

Magellan tilts at Venusian windmills

MagellanNASA’s Magellan space probe, still orbiting Venus since 1990, enters a phase of slightly riskier experiments, dipping its solar panels into the upper reaches of the Venusian atmosphere and firing its reaction control engines to keep from spinning out of control. This allows for studies of the composition of Venus’ atmosphere, as well as studies of the vehicle’s behavior as it resists atmospheric friction. The results of the “windmill” experiment inform the design of future Mars probes which will need to aerobrake to slow down and enter the Martian atmosphere.

Farewell, Magellan!

Carpe AtmospherumNASA’s Magellan space probe, orbiting Venus since 1990, is retired by entering the atmosphere of the planet whose surface it has mapped. With its power systems exhibiting signs of age and wear, Magellan has been intentionally dropped into an orbit low enough to allow its destruction in Venus’ dense atmosphere. Launched in 1989 via space shuttle, Magellan mapped the planet’s surface with cloud-penetrating radar, covering 98% of the Venusian surface, at least 1/5 of it with stereoscopic imaging allowing for accurate 3-D reconstruction of Venus’ surface features.

Venus Express arrives

VenusThe European Space Agency’s Venus Express space probe – the first unmanned spacecraft to closely examine the second planet from the sun since the late 1970s – arrives at the planet to undertake a detailed study of the atmosphere, the unusually symmetrical cloud patterns of the planet’s north and south hemispheres, as well as observing the massive, hurricane-like vortices which remain over the poles. Venus Express also looks for the source of traces of sulphur dioxide in the Venusian atmosphere, which could be a sign that of active volcanoes on the surface.

AKATSUKI launched to Venus

AkatsukiThe Japanese space agency, JAXA, launches unmanned space probe AKATSUKI, known more formally as the Venus Climate Orbiter. The spacecraft is expected to reach Venus in seven months and take up orbit around that planet, where it will study Venus’ atmosphere in depth. “Akatsuki” translates to “Dawn”, but is referred to by its Japanese name to avoid confusion with NASA’s asteroid-belt-exploring Dawn spacecraft.

Missing Venus

Akatsuki at VenusJapan’s AKATSUKI unmanned space probe fires its thrusters to slow down enough to be captured into an orbit around Venus, a maneuver which will take place mostly in the planet’s shadow, out of communication with Earth. But when ground controllers reacquire communications with AKATSUKI, it is in safe mode, and not in its predicted orbit around Venus. The main orbital engine, damaged by overheating due to salt deposits on a fuel valve, fired for less than three minutes and cannot safely be fired again, leaving AKATSUKI into a solar orbit. Mission planners put AKATSUKI into a hibernation mode to preserve it for another opportunity to orbit Venus in 2015.

AKATSUKI’s second shot at Venus

Akatsuki at VenusJAXA, the Japanese space agency, announces its plans to put the unmanned AKATSUKI space probe into orbit around Venus. Originally launched in 2010, AKATSUKI failed to orbit the planet in December of that year due to a critical engine malfunction and instead fell into an orbit around the sun, but mission planners have devised a strategy to use its attitude control engines to slow it enough to be captured around Venus when it intersects the planet’s orbit again. AKATSUKI, more formally known as the Venus Climate Orbiter, is intended to study the atmosphere and weather of Venus, a mission it will begin in December if it can successfully enter orbit.

AKATSUKI arrives at Venus

Akatsuki at VenusThe Japanese space probe AKATSUKI, launched in 2010 but left in an orbit around the sun by an engine glitch, catches up with its original target, the planet Venus, and fires its attitude control thrusters. The lengthy engine burn slows AKATSUKI enough to be captured by Venus’ gravity, in an elliptical 13-day orbit that brings the probe within 250 miles of the Venusian clouds it was sent to study at its closest, and nearly a quarter million miles away from the planet at the furthest. Another engine burn is planned for March 2016 to circularize and shorten AKATSUKI’s orbit so it can begin its observations of the planet’s weather patterns.

  • The shows, movies, music, games and other items covered here, and all related characters and placenames, are the property of the originators of the respective intellectual properties. This site is not intended to infringe upon the rightsholders' copyright in any way. makes no attempt - in using the names described herein - to supercede the copyrights of the rightsholders, nor is any of this information officially sanctioned, licensed, or endorsed by the creators, writers or producers.